Animal and cell studies [1] show that fisetin may be another natural strategy to help combat asthma. Researchers found that fisetin could reduce lung inflammation and airway hyper-responsiveness. Fisetin was able to modulate the core inflammatory gene signal, NF-kappaB, to reduce excessive inappropriate inflammatory behavior relating to the lungs. Fisetin actually promoted balance in the immune system, reducing the excessive T Helper 2 response that is typically overactive in asthma patients.

We already know that B vitamins, quercetin, magnesium, vitamin C, DHA, friendly flora, and vitamin D can all help asthma. It never hurts to have yet another nutrient that can lend support, considering there is an asthma epidemic in our children who are being treated with drugs that don’t solve the source of their problems and barely manage their symptoms.

[1] (see study below) http://www.wellnessresources.com/studies/fisetin_and_asthma

This article from www.wellnessresources.com/health/articles/fisetin_reduces_asthma-related_inflammation/

Study Title: Immunosuppressive effects of fisetin in ovalbumin-induced asthma through inhibition of NF-κB activity.

Study Abstract: Fisetin, a flavonoid compound commonly present in fruits and vegetables, can exert anti-inflammation activities via inhibition of the NF-κB-signaling pathway. This study aims to evaluate the antiasthma activity of fisetin and investigate its possible molecular mechanisms. We found that fisetin attenuated lung inflammation, goblet cell hyperplasia, and airway hyperresponsiveness in ovalbumin-induced asthma and decreased eosinophils and lymphocytes in bronchoalveolar lavage fluid. Fisetin treatment reduced expression of the key initiators of allergic airway inflammation (eotaxin-1 and TSLP), Th2-associated cytokines (IL-4, IL-5, and IL-13) in lungs, and Th2-predominant transcription factor GATA-3 and cytokines in thoracic lymph node cells and splenocytes. Notably, fisetin treatment impaired NF-κB activation in OVA-stimulated lung tissues and TNF-α-stimulated bronchial epithelial cells. Collectively, this study demonstrated the beneficial effect of fisetin in the amelioration of asthmatic phenotypes. The antiasthma activity of fisetin is associated with reduction of Th2 responses as well as suppression of NF-κB and its downstream chemokines.

Study Information: Wu MY, Hung SK, Fu SL. Immunosuppressive effects of fisetin in ovalbumin-induced asthma through inhibition of NF-κB activity. J Agric Food Chem. 2011 October 12;59(19):10496-504

Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan, 11221.